
Software Safety and Security
in a world of Systems

Franco Gasperoni

I am a simple observer

Other people @ AdaCore know automotive much better than I do

Security is VERY important, tomorrow’s talk is about security

Safety & security are tightly connected

Disclaimer

Engineering requires

• Intuition / creativity → Humans only

• Formalism (model of the world) → Tools & humans

Complexity of engineering safe & secure systems keeps ↗

if formalization ↗ help from machines ↗ (tools)

Where are possible near-term / long-tem wins ?

The point of this talk

Automotive: the most important transportation industry today

100 M vehicles produced in 2016

vs a TOTAL of 40,000 planes in the world now

Employees: 50M worldwide

10M in manufacturing

40M car dealers + car repair shops

Sales in 2015

Automotive trends …

… shakeup coming ?

1. Safety & Convenience

What do you see?

... a weapon

Times Square 2017-May-19

Automotive Safety: road crashes

• 1.3 M/year die: 2+ deaths/hour

• 20-50 M/year injured or disabled

• 9th leading cause of death

• Leading cause of death among ages 15-29

• Cost of USD $518 billion globally, 1 to 2% of their annual GDP

• Unless action is taken, 5th leading cause of death by 2030

What if humans were not allowed to drive?

1. Safety & convenience

Level 0: Humans do all the driving

Level 1: one task automated (cruise control)

Level 2: a few tasks automated (L1 + slow down/break in front of obstacles, stay in lane)

Level 3: Some decisions (L2 + look around, decide to change lanes, pass, A7 prototype)

Level 4: Car handles many situations by itself in “safe” places (e.g. highway low-traffic)

Level 5: Humans are NOT allowed to drive, the car does it all (Google car)

Level 6: Cars can fly or planes can drive (Terrafugia TF-X)

2. Shift in engineering complexity

Tesla to produce batteries for significantly less cost

3. Ownership Paradigm

Why do we need to own a car which will sit unused most of the time?

I owned music records

My daughters not

Music

Netflix does not own its servers

On Disruptive Innovation

Telephony

Electronics and software made this possible

Phones are still in the

communication business,

voice is just one many things

communicated

Will electronics and software make this possible ?

What’s at stake: value creation

There is already a lot of SW in a car

Jet fighter: 10+ M SLoc

A380 - B787: 100+ M SLoc

Modern car: 100+ M Sloc

Much more software coming

OEMs we spoke to

SW development getting more complex

challenge to maintain quality at a reasonable cost.

life cycle is 5 years for a car

But software improvements are done every year

Self driving vehicles require a different attitude towards

Safety (accidental crashes)

Security (cars being used as weapons on a mass scale)

Avionics has similar challenges

Who will solve the automotive software challenge?

Take away

Electronics & SW in the front seat

Mechanics → Mechatronics → Softchanics

This will take time, but when building automotive SW we have to master

time-to-market

complexity

safety & security

This is always a moving target ☺

conflicting
requirements

Safety & security standards to the
rescue?

Safety standards

DO-178 B/C or ED-12B/C Avionics

IEC 61508 Industrial automation at large

CENELEC EN 50128 Railway

ISO 26262 Automotive

Prescribe “due diligence” during system construction

1,000s of artifacts produced and reviewed (requirements, design, ...)

TESTING is a significant part of the “due diligence”

The challenge with safety standards, DO-178 example

1982: DO-178
Basic SW design assurance

3 DAL (design assurance levels) ie 3 levels of SW safety

1985: DO-178A
Testing and configuration management

1992: DO-178B
5 DALs

Focus moves from testing to requirements

2012: DO-178C
Clarifies tool qualification

Adds Model Based Development and Verification, OO technology, formal methods

1982 to 2012 - 30 years gone by

Technology evolves faster than Safety standards

Work on a new standard started when the technology is already there (example of Model

Based Development, e.g. Simulink)

By the time the new standard is out technology is moving on.

So work has started in 2015-2016 on a meta approach

What are the overarching principles of a safety standard?

EASA, FAA, et al.

“overarching principles to streamline the overall certification process,

looking at it from a system perspective rather than prescriptive rules”

Trying to combine

- system standard (ARP4754A)

- software standard (DO-178C)

- complex hardware standard (DO-254)

Meta-certification

approach

Overarching properties

1. Intent what is the system supposed to do and how does it address failures ?

2. Correctness is the implementation of the intent OK ?

3. Necessity are all the items in the implementation needed ?
If not, can the additional items be shown not to affect safety ?

Some aspects of engineering systems

One aspect of engineering

Create GIZMO

Check GIZMO for
correctness & completeness

Another: divide, create, integrate

Tiers of decomposition = refinements of abstraction

Abstraction X

created and checked by
X experts

Abstraction Y

created and checked by
Y experts

Abstraction Z

created and checked by
Z experts

Some engineering challenges

Challenge: Experts

Getting experts to work together and understand each other

P. Albertos, Instituto de Automática e Informática Industrial, Universidad Politécnica de Valencia

Challenge: Cost of fixing problems

1x

10x

100x

Challenge: The war on talent

In developed countries the need for engineerings

professionals outpaces what local universities can

deliver. This is particularly true in software.

How can businesses meet their engineering needs?

Solutions anyone?

Getting experts to work together

Encourage cooperation across departments

“Bi-lingual” tools to help experts communicate and

understand each other (an example later on)

Finding problems ASAP

Humans are good at creating abstractions

Machines are good at execution (following orders)

checking

...

Create

Check

Requires

formalization

Abstraction created has Execution Checking

No machine-readable semantics 🙌 🙌🙌🙌🙌🙌

Potentially ambiguous semantics 🖳 🖳 🙌🙌🙌

Clear semantics 🖳 🖳 🙌🙌

Clear semantics + ways to state intent 🖳 🖳 🙌

5X Sloc of tests per

operational Sloc

If we have ...

Formalized semantics

→ Machines can do part of the work

→ can check some inconsistencies

Formalized semantics + ways to state intent

1. State properties of your abstractions

2. Machines can check property-preservation (ideally across abstraction layers)

... formalizing & automating takes time and is a tradeoff

Intent and formalization

Specifying & checking intent today

Intent: function of many things

- what we can implement, cost, time-to-market, know-how, hiring ...

Some aspects of intent clarified during implementation

Specifying intent: creative activity, hard to formalize as a whole

Checking intent: by hand as part of the whole process (we should do better)

Checking safety & security properties

Use formalisms (likely domain-specific) to

Specify key safety & security properties of the intent

Machines check their consistency (completeness checked by humans)

Machines check properties hold across abstraction layers

Example: UAV Mission Management System 1 of 2

Ranges [a:p:b] (u): from min a, to max b, with increments p, physical unit u.

Climb safety constraints:
max take-off speed: 75kt,
climb rate guaranteed in [0.3, 3] m/s,
precision of flight level capture: +/- 50ft,
precision of speed capture: +/- 5kt.

Cruise safety constraints:
Minimum flight level: 500ft,
Maximum flight level: 1500ft,
Flight level precision: +/- 50ft,
Maximum speed: 125kt,

Descent safety constraints:
descent rate guaranteed in [0.1, 1] m/s,
maximum landing speed: 25kt.

Example: Property preservation across ALs 2 of 2

Requirements

Some formalized safety &
security properties

Simulink models

Plant and control

Generated code

Properties

Properties

Properties OK

Properties OK

Properties could be

checked at code level

Correctness of implementation

The architecture abstraction

Requirements

SoftwareHardware

System
architecture

Hardware
architecture

Software
architecture

The Architecture abstraction

How do we understand the impact of architectural decisions?

- Components cannot be safe & secure in isolation

- Need tools to identify mismatched assumptions in system interactions

- Work on secure architectures is an important topic

Today most diagrams (Sysml) don’t have clear semantics.

Is AADL better?
Can asynchronous events interfere? Can

SW components interfere?

In automotive FFI is a requirement

In the 100 M Sloc in a car

Plenty of non critical SW (e.g. audio/video) in theory

How do we know this SW does not interfere with the rest?

Automotive has a word for this FFI

Even this is not enough: if hack car entertainment system + cranks up the volume + puts

unbearable frequency + cannot turn off the radio …

Windshield sprays hacked + start spraying your windshield + disabling wipers

if something can be hacked it will

Secure architectures is an important area

Researchers' car hacking demonstrations show need for secure architecture

keeping cars' control circuits separate from the Internet ones

Not sharing a common bus between critical + non critical components

Software & correctness

Major classes of software as I understand them in automotive

Control laws: Simulink ®

OS, drivers, ...: Hand-written

Other: Hand-written

Pattern matching: Deep learning techniques

Did I miss something?

Correctness & Deep learning

Deep learning: the key is in the data & learning

Correctness & hand-written code

Testing challenges

SPARK – robustness & programming by contract

Checks inconsistencies out-of range values, dead exec paths…

Checks absence of run-time errors buffer overflows, divide by 0, …

Specify properties & have them verified FFI

Robustness is there by construction, NO

“conventional” robustness testing necessary

SPARK

procedure Stabilize (Mode: in Mode_Type; Success: out Boolean)

SPARK – a more complete spec

procedure Stabilize (Mode: in Mode_Type; Success: out Boolean)

with Global => (Input => (Accel, Giro), In_Out => Rotors),

SPARK – programming by contract

Spark-2014.org & libre.adacore.com

procedure Stabilize (Mode: in Mode_Type; Success: out Boolean)

with Global => (Input => (Accel, Giro), In_Out => Rotors),

Pre => Mode /= Off,

Post => (if Success then Delta_Change (Rotors'Old, Rotors));

http://libre.adacore.com/

Correctness & MBE

MBE in Automotive

Modeling the laws of physics

Creating a controller

Checking (by simulation) the controller in its physical context (the “plant”)

Translating the controller into software

“Plant and controller models” written & simulated with Simulink®

Machines (autocoding) translate: what is the state of the art ?

Requirements

Simulink®
models

Software

Autocode generation

Generated code

• Consistent with simulation

• Customizeable

• Can integrate & seamlessly debug hand-written code

How do you check if the controller contains runtime errors ?

• Code generator comes with a static verifier

What happens when upgrading to a new version of Simulink® ?

• Code generator produces the same code for the same models

Simulink®
models

Software

Trusted

A joint model & code debugger helps experts work together

SIL + PIL debugging, what-if scenarios (test difficult behaviors on the system by specifying signals that might be hard to

generate by conventional testing)

Conclusion

Complexity of engineering safe & secure systems ↗

if formalization ↗ help from tools ↗

but

too much formalism work ↗↗

Engineering is the art of compromise

Use the right balance of formalism to

Specify key safety & security properties of the intent

Have tools check these properties through layers of abstraction

Use technologies that

- Allow to specify safe & secure properties

- Check them

- Limit the introduction of flaws

- Detect errors early (e.g. inconsistencies)

Keep humans creative

Create GIZMO

Check GIZMO for
correctness & completeness

Each OP is stated in 1 page

1. Statement

2. Definitions

3. Pre-requisites (which must exist to allow OP satisfaction to be shown)

4. Constraints (on how OP satisfaction must be demonstrated)

5. Assumptions (which need only be stated, not justified)

Definitions
- Desired system behavior: System needs and constraints expressed by the stakeholders

- Defined intended functions (DIF): The record of the system needs and constraints as expressed by stakeholders

- Failure Condition(s): A condition having an effect on the aircraft and/or its occupants, either direct or
consequential, which is caused or contributed to by one or more failures or errors, considering flight phase and
relevant adverse operational or environmental conditions or external events (from ARP 4754A)

- Foreseeable operating conditions: External and internal conditions in which the system is used, encompassing all
known normal and abnormal conditions

- Unacceptable Safety Impact: An impact which compromises the system safety assessment

- Implementation: Item or collection of items contributing to system realization, for which acceptance or approval
is being sought

- Item (from ARP 4754A) is a hardware or software element having bounded and well‐defined interfaces

Constraints applying to all OPs

- The process to satisfy each OP must be defined and conducted as defined

- Criteria for evaluating the artifacts are defined and shown to be satisfied individually

and collectively

- All artifacts required to establish the OP are under configuration management and

change control

Intent

The defined intended functions are correct and complete with respect to the desired

system behavior.

Constraints

- The defined intended functions must address the failure conditions

Correctness

The implementation is correct with respect to its defined intended functions, under

foreseeable operating conditions

Constraints

- When tiers of decomposition are used, the means of showing correctness among the

tiers and to the defined intended functions must be defined and conducted as

defined

- The implementation must be correct when functioning as part of the integrated

system or in environment(s) representative of the integrated system

Necessity

All of the implementation is either required by the defined intended functions or is

without unacceptable safety impact

Constraints

- The system safety assessment must address all of the implementation

