

Risk Based Security

Automotive Safety & Security, 30. Mai 2017 Christof Ebert and Dominik Lieckfeldt, Vector Consulting Services

Agenda

Motivation

Risk-based approach to Cybersecurity Conslusion

The Challenge of Increasing Functionality

- More and more distributed development
- ▶ Rising safety, security and network requirements

Car2Car, Car2X Cloud Computing 5G mobile communication Fuel-cell technology Autonomous driving Brake-by-wire Steer-by-wire Security & safety Laser-sourced lighting 3D displays Gesture HMI Ethernet/IP backbone Electric powertrain Adaptive cruise control Lane Assistant Stop-/Start automatic **Emergency Break Assist** Head-up Display **Electronic Brake Control** Telediagnostics AUTOSAR ...

Connectivity + Complexity = **Cyber Attacks**

Many different attack vectors to be regarded

Functional Safety

- Goal: Protect health
- Risk: Accident
- Governance: ISO 26262
- Methods:
 - HARA, FTA, FMEA, ...
 - ▶ Fail operational, ...
 - Redundancy, ...

- Goal: Protect assets
- ▶ Risk: Attack, exploits
- Governance: ISO 27001 etc.
- Methods:
 - ▶ TARA, ...
 - Cryptography, IDIP, ...
 - Key management, ...

- Goal: Protect personal data
- ▶ Risk: Data breach
- ► Governance: Privacy laws
- Methods:
 - ► TARA,...
 - Cryptography,...
 - ▶ Explicit consent, ...

VECTOR >

Feature Example: Experiences from developer's daily life ...

Function	Hazard	S/E/C	ASIL
Passive Entry	After starting from standstill a nearby second key opens the car from remote by accident. Doors are unlocked and opened unintentionally. Car could open and hit pedestrian on low speed.	S2/E3/C1	QM
Steering Column Lock	During driving on high speed (Highway) steering column is locked and vehicle crashes in safety fence	S3/E4/C3	D
Steering Column Lock	Person nearby is locking steering column from remote whereby the vehicle is on medium speed.	S3/ ?? /C3	??

Functional safety methods do not cover security issues. An automotive standard is missing.

Different Threats Demand Holistic Systems Engineering

Functional Safety

- Goal: Protect health
- Risk: Accident
- Governance: ISO 26262
- Methods:
 - ▶ HARA, FTA, FMEA, ...
 - ▶ Fail operational, ...
 - Redundancy, ...

Cyber Security

- Goal: Protect assets
- Risk: Attack, exploits
- ► Governance: ISO 27001 etc.
- Methods:
 - ▶ TARA, ...
 - Cryptography, IDIP, ...
 - ► Key management, ...

Privacy

- Goal: Protect personal data
- Risk: Data breach
- Governance: Privacy laws
- Methods:
 - ▶ TARA,...
 - Cryptography,...
 - Explicit consent, ...

Liability → Risk management → Holistic systems engineering

Agenda

Motivation

Risk-based approach to Cybersecurity
 Conslusion

Functional safety & Cyber security – Risk based approach

The purpose of development measures is to **reduce the residual risk** (caused by new features) to an acceptable level.

Security considers a larger scope of threats compared with Safety.

Detailed Steps for TARA

Assets	Threat-Model & Risks	Measures	Concept for Solution Verification
Asset/Function	Security Attack	Threat	Risk
Asset 1	Attack-type 1	Threat 1	EAL (Evaluation Assurance Levels)
Function 1	Attack-type 2	Threat 2	ASIL

Asset/ Function	Attack	Threat	Threat-Level (<i>e.g. Expertise,</i> <i>Equipment</i>)	Impact-Level (e.g. Financial, Privacy, Safety)	Risk level
Passive entry	Authenticity: Attacker unlocks the vehicle doors.	Vehicle doors are unlocked and vehicle is stolen.	High	High 3	Medium
	Authenticity: Attacker unlocks the vehicle doors.	Vehicle doors are opened at high speed. Vehicle crashes into opposing traffic.	Very High	Very High	Very High
	Authenticity: Attacker unlocks the doors of many vehicles.	Vehicle doors are unlocked and many vehicles are stolen.	Medium	Very High	High

12/26 © 2017. Vector Consulting Services GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2017-05-30

TARA Tool from Real World

No.

-

CIAAG Confidentiality, Integrity, Availability, Authenticity, Governance							Resulting Security Goals Maximum (Safety, Financial)												
4 NO.	√ariant	 Asset ID 	Asset / Vehicle Function	CIA	Threat ID	Hazard / Threat	Expertise	Window of Opportunity	Knowledge	Equipment	Threat level	Safety	Financial	Operational	Privacy	Impact Level	Security level	SG ID	Security Goal
1	Platform (TBC)	Ast 2	Braking to prevent collision	A	Tht-1	Driver crashes into preceding car. Passengers in both cars are severly wounded or killed.	Expert	Medium	Sensitive	Bespokes	Low	Life- threatening or fatal injuries	Low	High	No impact	Critical	Medium	SG1	If requested the brakes shall be activated
2	Platform (TBC)	Ast 2	Braking to prevent collision	I	Tht-2	Braking although not authorized, e.g. > 10 km/h	Expert	Medium	Sensitive	Bespokes	Low	Severe and life threatening injuries	High	High	No impact	Critical	High	SG2	Unauthorized braking shall be avoided.
3	Platform (TBC)	Ast 1	IPR of functions	С	Tht-3	RCTA function becomes public knowledge	Expert	High	Public	Bespokes	Medium	No injuries	High	No impact	No impact	Critical	High	SG3	RCTA function shall remain secret.

Security Architecture Design

Security Architecture Design

Peer Reviews

Attack Trees as System Vulnerability Analysis

Derive Appropriate Security Mechanisms

	Prevent	Detect	Forensic				
Critical	++	++	++				
High	+	++	++				
Medium	+	+	++				
Low	(+)	+	+				
QM	0	0	+				
 Examples Network/preservation Encryption, Encryption, Key manag Access cont Firewall Intrusion preservation 	ocess/ information digital signatures ement trol	 Examples Intrusion detection systems (IDS) Monitoring 	 Examples Logging Security issue knowledge base Analysis and investigation of digital evidence 				

O: No recommendation for or against approach

+: Approach is recommended for security level

++: Approach is highly recommended for security level

Security Engineering

Implement Security by Design: Verification and Validation

Tools

- Static / dynamic code analyzer
- Encryption cracker
- Vulnerability scanner
- Network traffic analyzer / stress tester
- Hardware debugger
- Interface scanner
- Exploit tester
- Layered fuzzing tester

Life Hacking

- Penetration testing
- Attack schemes
- Governance and social engineering attacks

Test for the known – and for the unknown. Ensure automatic regression tests are running with each delivery.

Security By Design: What will happen to After Sales Services?

Major difference between security & safety: Risk-management during vehicle lifetime.

Game Changer: Deploy Security for Service & Operations: OTA

Over the Air (OTA) Update: This feature opens the gate for a big number of threats and is a solution at same time.

Agenda

Motivation

Risk-based approach to Cybersecurity

Conslusion

Automotive Cyber Security

Security demands a thorough culture change

- Advance a cyber security culture across functions
- Enforce strong governance end-to-end, not just encryption and key management

Risk based security is the order of the day

- Apply systems engineering for safety and cyber security
- Systematically use professional tools such as Threat Analysis and Risk Assessment (TARA), vulnerability analysis, secure by design methods, hacking invitations, and various penetration testing
- ► Close known vulnerabilities as soon as possible (→ OTA)
- Audit your suppliers and achieve a holistic perspective on risks and solutions

It needs the ability to think like a **Criminal** and preemptively act as an **Engineer**

Vector Cyber Security is Defined by Three Levers

Digitization

Automotive and IT industries increasingly converge. Software and IT are the major market driver in automotive. IT departments and automotive E/E must collaborate.

Attacks

Critical systems are by definition insecure. A 100% security solution is not possible. Advanced risk assessment and mitigation is the order of the day.

Governance

Abuse, misuse and confuse cases will make it to the headlines. Especially if safety and privacy are impacted. Systematic security engineering needs a thorough culture change.

Vector proposition:

- Bridging best practices from IT and engineering
- Holistic systems
 Engineering for Security
 and Safety

Vector proposition:

- Risk based security assessment and engineering
- AUTOSAR software, HW based security, engineering services

Vector proposition:

- Security culture: Competences, organization, process
- Secure by design: Infrastructures, methods, tools

Vector Cyber Security Portfolio

Security Solutions

Consulting

Vector Security Check, Security Engineering, ...

Software

AUTOSAR, Re-programming ECUs, OTA, Smart Charging...

Tools

24/26

Test, Diagnosis, ...

www.vector.com/security

Trainings and media

- Training "Automotive Cyber Security" Stuttgart, Tue. 5. Jul. 2016 <u>www.vector.com/training-security</u>
- In-house trainings tailored to your needs available worldwide
- Free white papers... <u>www.vector.com/media-security</u>

Conslusion

Thank you for your attention. For more information please contact us.

Vector Consulting Services

Your Partner in Achieving Engineering Excellence Phone +49 711 80670-0 www.vector.com/consulting Fax +49 711 80670-444 consulting-info@vector.com

© 2017. Vector Consulting Services GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2017-05-30