
Extending a Compiler Backend for Complete
Memory Error Detection

Norman A. Rink and Jeronimo Castrillon
Technische Universität Dresden

Automotive – Safety & Security 2017
30 May 2017
Stuttgart

Outline

1. Motivation

2. Error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

2

Outline

1. Motivation

2. Memory error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

3

Motivation

q Frequency of transient HW faults (aka. soft errors) is increasing.
q Traditional cause of faults: cosmic rays.
q Vulnerability is increasing due to smaller feature sizes and lower operating

voltages.
q Dark/dim silicon in memory modules:

§ Extended refresh cycles for DRAM.
§ Lower supply voltage for SRAM.

Norman	Rink,	norman.rink@tu-dresden.de4

S. Borkar, “Designing reliable systems from
unreliable components: …,” IEEE Micro, vol.
25, no. 6, 2005.

Software-implemented error detection has the
flexibility to detect also complex error patterns.

for energy
efficiency

q Memory errors: ECC memory modules have their limitations.
q Typically SEC-DED codes (single error correction, double error detection).
q Large fractions of memory errors cannot be handled by SEC-DED codes (Hwang et al., ASPLOS 2012).
q ECC not necessarily extended to the entire memory hierarchy. (Load-store queues?)

Software-implemented error detection

q Manual incorporation of integrity checks.
✘ Laborious and cumbersome.
✘ Mixes functional and non-functional requirements.
✘ Requires expert knowledge.
✘ Error detection limited to anticipated errors.

q Automated, disciplined approaches.
q Enable comprehensive error detection.
q Source-to-source transformation.
q Aspects.
q Compiler-based approaches:

§ Transformation of machine code.
§ Transformation of intermediate representation (IR).

Norman	Rink,	norman.rink@tu-dresden.de5

gives access to sophisticated
program analysis

increasingly popular since the
advent of the LLVM framework

popular in the late 90s
and early 2000s

var = a + b;
r = c * var;

check(a0, a1);
...
var0 = a0 + b0;
var1 = a1 + b1;
check(var0, var1);
...
r0 = c0 * var0;
r1 = c1 * var1;
check(r0, r1);

Limitations of software-implemented error detection

Norman	Rink,	norman.rink@tu-dresden.de6

Percentage of dynamic memory accesses
(loads) that are present in the program IR
or inserted by the compiler backend:

(Twelve test programs, labeled A-L.)

var = a + b;
r = c * var;

check(a0, a1);
...
var0 = a0 + b0;
var1 = a1 + b1;
check(var0, var1);
...
r0 = c0 * var0;
r1 = c1 * var1;
check(r0, r1);

q To detect errors in memory …
q Which variables are kept in memory?
q When are variables kept in memory?
q Are there any hidden variables that

are put into memory?

Ultimately, the compiler
knows all this …
... but only very late!

In some cases (H, L) virtually
all loads are inserted by the

compiler backend!

Outline

1. Motivation

2. Memory error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

7

Memory error detection by DMR

q DMR (dual modular redundancy).
q In the context of software-implemented error detection: duplication of data.

8

store i64 %0, i64* %p0
store i64 %0, i64* %p1
...
%10 = load i64* %p0
%11 = load i64* %p1

%f0 = icmp eq i64 %10, %r11
br i1 %f0, label continue,

label recover

duplication
of data

error
detection

q DMR may introduce race conditions in multi-threaded applications.
q State-of-the-art work usually assumes memory is protected by ECC (in hardware).

store i64 %0, i64* %p
...
%1 = load i64* %p

AN encoding

q AN encoding:
q Fix an integer constant A.
q Encode integer values by multiplying by A:

q Decode by dividing by A:

q Check for errors:

q Error-detecting capability varies with the constant A.
q Generally, multi-bit errors can be detected by suitable A.
q A = 58659 is known to have good properties; can detect up to 5 bit flips, Hoffmann et al., 2015.

q AN encoding introduces large overheads if used to protect operations: several 10x-100x.

Norman	Rink,	norman.rink@tu-dresden.de9

nenc = n * A

n = nenc / A

nenc mod A = 0

q AN encoding is applied at the LLVM IR level.
q Common approach in software-implemented fault

tolerance schemes.

Memory error detection by AN encoding (1)

q Detection of multi-bit errors in memory, including caches, load-store queues.

q Apply AN encoding only to values stored to memory à low overhead due to AN encoding.

Norman	Rink,	norman.rink@tu-dresden.de10

%01 = mul i64 %00, A
store i64 %01, i64* %p

%1 = load i64* %p
%2 = srem i64 %1, A

%f0 = icmp eq i64 %2, 0
br i1 %f0, label continue,

label recover

%3 = sdiv i64 %2, A
...

encode before storing: check and decode after loading:

Error detection at the IR level misses memory accesses
that are inserted by the compiler backend.

Memory error detection by AN encoding (2)

q Remember this plot:

Norman	Rink,	norman.rink@tu-dresden.de11

q Backend for the C programming language
inserts memory accesses for:
q Register spills (spill).
q Callee-saved registers (csr).
q Frame pointer (fptr).
q Return address (return).
q Function arguments (arg).
q Jump tables (jt).

implement
function calls

Outline

1. Motivation

2. Memory error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

12

The extended compiler backend

Norman	Rink,	norman.rink@tu-dresden.de13

q Backend for the C programming language
inserts memory accesses for:
q Register spills (spill).
q Callee-saved registers (csr).
q Frame pointer (fptr).
q Return address (return).
q Function arguments (arg).
q Jump tables (jt).

q Implement error detection in the compiler
backend by DMR:
q Faster than AN encoding.
q Keeps function calls efficient.
q Adds (almost) no register pressure.

q Duplicated store/load:
q Additional memory accesses are ”cheap”.
q Memory locations already in the cache.
q (All) memory accesses are thread-local.

DMR for register spills

Norman	Rink,	norman.rink@tu-dresden.de14

mov eax, -0x30(ebp)
...
mov -0x30(ebp), eax
add eax, (esi)

mov eax, -0x34(ebp)
mov eax, -0x30(ebp)
...
mov -0x30(ebp), eax
cmp -0x34(ebp), eax

jne <error_handler>

add eax, (esi)

q Comparison memory/register is specific to x86 – more generally, CISC machines.
q RISC machines? à cmp mem/reg might be sensible ISA extension.

DMR for function arguments

Norman	Rink,	norman.rink@tu-dresden.de15

q Requires co-operation between caller and callee (modified calling convention).
q Library calls still work. (Caller can ignore duplicated arguments).
q The number of arguments passed on the stack may be low (depending on the architecture).

DMR for the return address

Norman	Rink,	norman.rink@tu-dresden.de16

0x804a99e: ...
0x804a9a3: call <foo>
0x804a9a8: ...

...
ret

caller:

callee (”foo”):

push ebx
...
pop ebx
cmp (esp), ebx

jne <error_handler>

add 0x4, esp
jmp *ebx

0x804a99e: mov 0x804a9a8, ebx
0x804a9a3: call <foo>
0x804a9a8: ...

caller:

callee (”foo”):

q Modified calling convention: pass return address in register ebx.
q No modification required on, e.g., ARM or MIPS.

Outline

1. Motivation

2. Memory error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

17

Fault injection

18

q Assumptions:
q Only a single fault affect program execution.
q Only single bit flips occurs.

q Simulate symptoms of faults by …
q … flipping a bit in a memory location that is loaded from.

q Perform exhaustive fault injections:
q Flip a bit in all possible locations in all loads from memory

Commonly justified by the rarity of faults.
(SEU – single event upset)

Norman	Rink,	norman.rink@tu-dresden.de

letter test	case

A array	reduction

B bubblesort

C CRC-32

D DES	encryption

E Dijkstra	(shortest	path)

F expression	evaluation

G token	lexer

H expression	parser

I matrix	multiplication

J array	copy

K quicksort

L switch

Full memory error detection

Norman	Rink,	norman.rink@tu-dresden.de19

no error detection:

i386 (32bit) x86_64 (64bit)

AN encoding and DMR in the backend:

i386 (32bit) x86_64 (64bit)

Runtime overhead

Norman	Rink,	norman.rink@tu-dresden.de20

i386 (32bit) x86_64 (64bit)

Test programs: Subset of SPEC CINT2006:

i386 (32bit) x86_64 (64bit)

AN encoding dominates
the slow down.

Slow down dominated
by register spills.

Outline

1. Motivation

2. Memory error detection, AN encoding

3. The extended compiler backend

4. Evaluation

5. Summary

21

Summary

q Automatic code transformation that introduced memory error detection not comprehensive when
applied above the level of machine code.
q Transformations at the level of source code or IR desirable for productivity.

q Supporting memory error detection with DMR introduced by the compiler backend …
q ... leads to full memory error detection,
q ... incurs a runtime overhead of

§ 1.50 on i386 (SPEC CINT2006),
§ 1.13 on x86_64 (SPEC CINT 2006).

q Absence of vulnerabilities introduced by the compiler backend required for …
q ... (reliable analysis/evaluation of) relaxed fault tolerance schemes.
q ... applications with strict safety and reliability requirements.

q The stack has been found a major weakness.

Norman	Rink,	norman.rink@tu-dresden.de22

Extending a Compiler Backend for Complete
Memory Error Detection

Norman A. Rink and Jeronimo Castrillon
Technische Universität Dresden

Thank you.

