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Motivation

q Frequency of transient HW faults (aka. soft errors) is increasing.
q Traditional cause of faults: cosmic rays.
q Vulnerability is increasing due to smaller feature sizes and lower operating 

voltages.
q Dark/dim silicon in memory modules:

§ Extended refresh cycles for DRAM.
§ Lower supply voltage for SRAM.
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S. Borkar, “Designing reliable systems from 
unreliable components: …,” IEEE Micro, vol. 
25, no. 6, 2005.

Software-implemented error detection has the 
flexibility to detect also complex error patterns.

for energy 
efficiency

q Memory errors: ECC memory modules have their limitations.
q Typically SEC-DED codes (single error correction, double error detection).
q Large fractions of memory errors cannot be handled by SEC-DED codes (Hwang et al., ASPLOS 2012).
q ECC not necessarily extended to the entire memory hierarchy. (Load-store queues?)



Software-implemented error detection

q Manual incorporation of integrity checks.
✘ Laborious and cumbersome.
✘ Mixes functional and non-functional requirements.
✘ Requires expert knowledge.
✘ Error detection limited to anticipated errors.

q Automated, disciplined approaches.
q Enable comprehensive error detection.
q Source-to-source transformation.
q Aspects.
q Compiler-based approaches: 

§ Transformation of machine code.
§ Transformation of intermediate representation (IR).
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gives access to sophisticated 
program analysis

increasingly popular since the 
advent of the LLVM framework

popular in the late 90s 
and early 2000s

var = a + b;
r = c * var;

check(a0, a1);
...
var0 = a0 + b0;
var1 = a1 + b1;
check(var0, var1);
...
r0 = c0 * var0;
r1 = c1 * var1;
check(r0, r1);



Limitations of software-implemented error detection
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Percentage of dynamic memory accesses 
(loads) that are present in the program IR 
or inserted by the compiler backend:

(Twelve test programs, labeled A-L.) 

var = a + b;
r = c * var;

check(a0, a1);
...
var0 = a0 + b0;
var1 = a1 + b1;
check(var0, var1);
...
r0 = c0 * var0;
r1 = c1 * var1;
check(r0, r1);

q To detect errors in memory …
q Which variables are kept in memory?
q When are variables kept in memory?
q Are there any hidden variables that 

are put into memory?

Ultimately, the compiler 
knows all this …
... but only very late!

In some cases (H, L) virtually 
all loads are inserted by the 

compiler backend!
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Memory error detection by DMR

q DMR (dual modular redundancy).
q In the context of software-implemented error detection: duplication of data.
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store i64 %0, i64* %p0
store i64 %0, i64* %p1
...
%10 = load i64* %p0
%11 = load i64* %p1

%f0 = icmp eq i64 %10, %r11
br i1 %f0, label continue,

label recover

duplication 
of data

error 
detection

q DMR may introduce race conditions in multi-threaded applications.
q State-of-the-art work usually assumes memory is protected by ECC (in hardware).

store i64 %0, i64* %p
...
%1 = load i64* %p



AN encoding

q AN encoding:
q Fix an integer constant A.
q Encode integer values by multiplying by A:

q Decode by dividing by A:

q Check for errors:

q Error-detecting capability varies with the constant A.
q Generally, multi-bit errors can be detected by suitable A.
q A = 58659 is known to have good properties; can detect up to 5 bit flips, Hoffmann et al., 2015.

q AN encoding introduces large overheads if used to protect operations: several 10x-100x.
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nenc = n * A

n = nenc / A

nenc mod A = 0 



q AN encoding is applied at the LLVM IR level.
q Common approach in software-implemented fault 

tolerance schemes.

Memory error detection by AN encoding (1)

q Detection of multi-bit errors in memory, including caches, load-store queues.

q Apply AN encoding only to values stored to memory à low overhead due to AN encoding.
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%01 = mul i64 %00,  A
store i64 %01, i64* %p

%1 = load i64* %p
%2 = srem i64 %1, A

%f0 = icmp eq i64 %2, 0
br i1 %f0, label continue,

label recover

%3 = sdiv i64 %2, A
...

encode before storing: check and decode after loading:

Error detection at the IR level misses memory accesses 
that are inserted by the compiler backend.



Memory error detection by AN encoding (2)

q Remember this plot:
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q Backend for the C programming language 
inserts memory accesses for:
q Register spills (spill).
q Callee-saved registers (csr).
q Frame pointer (fptr).
q Return address (return).
q Function arguments (arg).
q Jump tables (jt).

implement 
function calls
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The extended compiler backend
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q Backend for the C programming language 
inserts memory accesses for:
q Register spills (spill).
q Callee-saved registers (csr).
q Frame pointer (fptr).
q Return address (return).
q Function arguments (arg).
q Jump tables (jt).

q Implement error detection in the compiler 
backend by DMR:
q Faster than AN encoding.
q Keeps function calls efficient.
q Adds (almost) no register pressure.

q Duplicated store/load:
q Additional memory accesses are ”cheap”.
q Memory locations already in the cache.
q (All) memory accesses are thread-local.



DMR for register spills
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mov eax, -0x30(ebp)
...
mov -0x30(ebp), eax
add eax, (esi)

mov eax, -0x34(ebp)
mov eax, -0x30(ebp)
...
mov -0x30(ebp), eax
cmp -0x34(ebp), eax

jne <error_handler>

add eax, (esi)

q Comparison memory/register is specific to x86 – more generally, CISC machines.
q RISC machines? à cmp mem/reg might be sensible ISA extension.



DMR for function arguments
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q Requires co-operation between caller and callee (modified calling convention).
q Library calls still work. (Caller can ignore duplicated arguments).
q The number of arguments passed on the stack may be low (depending on the architecture).



DMR for the return address
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0x804a99e: ...
0x804a9a3: call <foo>
0x804a9a8: ...

...
ret

caller:

callee (”foo”):

push ebx
...
pop ebx
cmp (esp), ebx

jne <error_handler>

add 0x4, esp
jmp *ebx

0x804a99e: mov 0x804a9a8, ebx
0x804a9a3: call <foo>
0x804a9a8: ...

caller:

callee (”foo”):

q Modified calling convention: pass return address in register ebx.
q No modification required on, e.g., ARM or MIPS.
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Fault injection
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q Assumptions:
q Only a single fault affect program execution.
q Only single bit flips occurs.

q Simulate symptoms of faults by …
q … flipping a bit in a memory location that is loaded from.

q Perform exhaustive fault injections:
q Flip a bit in all possible locations in all loads from memory

Commonly justified by the rarity of faults.
(SEU – single event upset)
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letter test	case

A array	reduction

B bubblesort

C CRC-32

D DES	encryption

E Dijkstra	(shortest	path)

F expression	evaluation

G token	lexer

H expression	parser

I matrix	multiplication

J array	copy

K quicksort

L switch



Full memory error detection
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no error detection:

i386 (32bit) x86_64 (64bit)

AN encoding and DMR in the backend:

i386 (32bit) x86_64 (64bit)



Runtime overhead
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i386 (32bit) x86_64 (64bit)

Test programs: Subset of SPEC CINT2006:

i386 (32bit) x86_64 (64bit)

AN encoding dominates 
the slow down.

Slow down dominated 
by register spills.
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Summary

q Automatic code transformation that introduced memory error detection not comprehensive when 
applied above the level of machine code.
q Transformations at the level of source code or IR desirable for productivity.

q Supporting memory error detection with DMR introduced by the compiler backend …
q ... leads to full memory error detection,
q ... incurs a runtime overhead of

§ 1.50 on i386 (SPEC CINT2006),
§ 1.13 on x86_64 (SPEC CINT 2006).

q Absence of vulnerabilities introduced by the compiler backend required for …
q ... (reliable analysis/evaluation of) relaxed fault tolerance schemes.
q ... applications with strict safety and reliability requirements.

q The stack has been found a major weakness.
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